A Novel Algorithm for Informative Meta Similarity Clusters Using Minimum Spanning Tree

نویسندگان

  • S. John Peter
  • S. P. Victor
چکیده

The minimum spanning tree clustering algorithm is capable of detecting clusters with irregular boundaries. In this paper we propose two minimum spanning trees based clustering algorithm. The first algorithm produces k clusters with center and guaranteed intra-cluster similarity. The radius and diameter of k clusters are computed to find the tightness of k clusters. The variance of the k clusters are also computed to find the compactness of the clusters. The second algorithm is proposed to create a dendrogram using the k clusters as objects with guaranteed inter-cluster similarity. The algorithm is also finds central cluster from the k number of clusters. The first algorithm uses divisive approach, where as the second algorithm uses agglomerative approach. In this paper we used both the approaches to find Informative Meta similarity clusters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Algorithm for Meta Similarity Clusters Using Minimum Spanning Tree

The minimum spanning tree clustering algorithm is capable of detecting clusters with irregular boundaries. In this paper we propose two minimum spanning trees based clustering algorithm. The first algorithm produces k clusters with center and guaranteed intra-cluster similarity. The second algorithm is proposed to create a dendrogram using the k clusters as objects with guaranteed inter-cluster...

متن کامل

Meta Similarity Noise-free Clusters Using Dynamic Minimum Spanning Tree with Self-Detection of Best Number of Clusters

Clustering is a process of discovering group of objects such that the objects of the same group are similar, and objects belonging to different groups are dissimilar. A number of clustering algorithms exist that can solve the problem of clustering, but most of them are very sensitive to their input parameters. Minimum Spanning Tree clustering algorithm is capable of detecting clusters with irre...

متن کامل

A Novel Algorithm for Central Cluster Using Minimum Spanning Tree

The minimum spanning tree clustering algorithm is capable of detecting clusters with irregular boundaries. In this paper we propose a novel minimum spanning tree based clustering algorithm. The algorithm produces k clusters with center and guaranteed intra-cluster similarity. The algorithm uses divisive approach to produce k number of clusters. The center points are considered as representative...

متن کامل

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

Minimum Spanning Tree-based Structural Similarity Clustering for Image Mining with Local Region Outliers

Image mining is more than just an extension of data mining to image domain. Image mining is a technique commonly used to extract knowledge directly from image. Image segmentation is the first step in image mining. We treat image segmentation as graph partitioning problem. In this paper we propose a novel algorithm, Minimum Spanning Tree based Structural Similarity Clustering for Image Mining wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1005.4585  شماره 

صفحات  -

تاریخ انتشار 2010